Fine-Grain Morphological Analyzer and Part-of-Speech Tagger for Arabic Text

نویسندگان

  • Majdi Sawalha
  • Eric Atwell
چکیده

Morphological analyzers and part-of-speech taggers are key technologies for most text analysis applications. Our aim is to develop a part-of-speech tagger for annotating a wide range of Arabic text formats, domains and genres including both vowelized and non-vowelized text. Enriching the text with linguistic analysis will maximize the potential for corpus re-use in a wide range of applications. We foresee the advantage of enriching the text with part-of-speech tags of very fine-grained grammatical distinctions, which reflect expert interest in syntax and morphology, but not specific needs of end-users, because end-user applications are not known in advance. In this paper we review existing Arabic Part-of-Speech Taggers and tag-sets, and illustrate four different Arabic PoS tag-sets for a sample of Arabic text from the Quran. We describe the detailed fine-grained morphological feature tag set of Arabic, and the fine-grained Arabic morphological analyzer algorithm. We faced practical challenges in applying the morphological analyzer to the 100-million-word Web Arabic Corpus: we had to port the software to the National Grid Service, adapt the analyser to cope with spelling variations and errors, and utilise a Broad-Coverage Lexical Resource combining 23 traditional Arabic lexicons. Finally we outline the construction of a Gold Standard for comparative evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Considering a resource-light approach to learning verb valencies

Here we describe work on learning the subcategories of verbs in a morphologically rich language using only minimal linguistic resources. Our goal is to learn verb subcategorizations for Quechua, an under-resourced morphologically rich language, from an unannotated corpus. We compare results from applying this approach to an unannotated Arabic corpus with those achieved by processing the same te...

متن کامل

سیستم برچسب گذاری اجزای واژگانی کلام در زبان فارسی

Abstract: Part-Of-Speech (POS) tagging is essential work for many models and methods in other areas in natural language processing such as machine translation, spell checker, text-to-speech, automatic speech recognition, etc. So far, high accurate POS taggers have been created in many languages. In this paper, we focus on POS tagging in the Persian language. Because of problems in Persian POS t...

متن کامل

Smoothing a Lexicon-based POS Tagger for Arabic and Hebrew

We propose an enhanced Part-of-Speech (POS) tagger of Semitic languages that treats Modern Standard Arabic (henceforth Arabic) and Modern Hebrew (henceforth Hebrew) using the same probabilistic model and architectural setting. We start out by porting an existing Hidden Markov Model POS tagger for Hebrew to Arabic by exchanging a morphological analyzer for Hebrew with Buckwalter's (2002) morphol...

متن کامل

ACL - 05 Computational Approaches to Semitic Languages

We explore the application of memorybased learning to morphological analysis and part-of-speech tagging of written Arabic, based on data from the Arabic Treebank. Morphological analysis – the construction of all possible analyses of isolated unvoweled wordforms – is performed as a letter-by-letter operation prediction task, where the operation encodes segmentation, part-of-speech, character cha...

متن کامل

POS Tagging of Dialectal Arabic: A Minimally Supervised Approach

Natural language processing technology for the dialects of Arabic is still in its infancy, due to the problem of obtaining large amounts of text data for spoken Arabic. In this paper we describe the development of a part-of-speech (POS) tagger for Egyptian Colloquial Arabic. We adopt a minimally supervised approach that only requires raw text data from several varieties of Arabic and a morpholo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010